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Abstract

In this paper, we introduce a system for discovering medical knowledge by learning
Bayesian networks and rules. Evolutionary computation is used as the search algorithm. The
Bayesian networks can provide an overall structure of the relationships among the attributes.
The rules can capture detailed and interesting patterns in the database. The system is applied
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1. Introduction

Data mining aims at discovering novel, interesting and useful knowledge from
databases [9]. Conventionally, the data is analyzed manually. Many hidden and
potentially useful relationships may not be recognized by the analyst. Nowadays,
many organizations including modern hospitals are capable of generating and
collecting a huge amount of data. This explosive growth of data requires an
automated way to extract useful knowledge. Thus, medical domain is a major area
for applying data mining. Through data mining, we can extract interesting knowl-
edge and regularities. The discovered knowledge can then be applied in the
corresponding field to increase the working efficiency and improve the quality of
decision making.

We developed a knowledge discovery system to extract knowledge from data.
There are five steps in the system (Fig. 1). Real-life data are collected in the first
step. Then, the data must be preprocessed before analysis can be started. The third
and fourth step induce knowledge from the preprocessed data. The causality and
structure analysis step learns the overall relationships between the variables. A
resulting Bayesian network represents the knowledge structure. Based on this
knowledge, the user can specify the grammar for the target rules to be discovered
from data. This grammar is used for the rule learning step that learns a set of
significant rules from the data. In the fifth step, the discovered knowledge is verified
and evaluated by the domain experts. The domain experts may discover and correct
mistakes in the discovered knowledge. On the other hand, the learned knowledge
can be used to refine the existing domain knowledge. Finally, the learned Bayesian
network is used to perform reasoning under uncertainty, and the induced rules are
incorporated into an expert system for decision making.

In this paper, we present the two knowledge learning steps which are the core of
the knowledge discovery system. They both employ evolutionary computation as
the search algorithms. This paper is organized as follows. Section 2 introduces the

Fig. 1. The knowledge discovery process.
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backgrounds on evolutionary computation, Bayesian network learning, and rule
learning. Section 3 describes the approaches for learning Bayesian networks. The
rule learning process is delineated in Section 4 and the details of the techniques are
given in Section 5. The data mining system has been applied to two real-life medical
databases. The results are presented in Sections 6 and 7 and the conclusion is
presented in Section 8.

2. Backgrounds

2.1. E6olutionary computation

The term evolutionary computation is used to describe algorithms that simulate
the natural evolution to perform function optimization and machine learning. They
are based on the Darwinian principle of evolution through natural selection. The
algorithms maintain a group of individuals to explore the search space. Examples
of evolutionary computation include genetic algorithms (GA) [19,13], genetic
programming (GP) [24,25], evolutionary programming (EP) [10,11] and evolution
strategy (ES) [34,35]. GA uses a fixed-length binary bit string as an individual.
Three genetic operators are used to search for better individuals. Reproduction
operator copies the unchanged individual. Crossover operator exchanges bits
between two parents. Mutation operator randomly changes individual bits. GP
extends GA by using a tree structure as the individual. EP emphasizes on the
behavioral linkage between parents and their offspring. Mutation is the only genetic
operator in EP. There is no constraint on the representation in EP. ES emphasizes
on the individual, i.e. the phenotype, to be the object to be optimized. A genetic
change in the individual is within a narrow band of the mutation step size and the
step size has self-adaptations.

Data mining can be considered as a search problem, which tries to find the most
accurate knowledge from all possible hypotheses. Since evolutionary computation is
a robust and parallel search algorithm, it can be used in data mining to find
interesting knowledge in noisy environment.

2.2. Bayesian network learning

Bayesian network is a formal knowledge representation supported by the well-de-
veloped Bayesian probability theory. A Bayesian network captures the conditional
probabilities between attributes. It can be used to perform reasoning under uncer-
tainty. A Bayesian network is a directed acyclic graph. Each node represents a
domain variable, and each edge represents a dependency between two nodes. An
edge from node A to node B can represent a causality, with A being the cause and
B being the effect. The value of each variable should be discrete. Each node is
associated with a set of parameters. Let Ni denote a node and PNi

denote the set of
parents of Ni. The parameters of Ni are conditional probability distributions in the
form of P(Ni �PNi

) with one distribution for each possible instance of PNi
. Fig. 2 is
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Fig. 2. A Bayesian network structure in a ‘Blue’ baby domain.

an example Bayesian network structure modeling a medical domain concerned with
‘blue’ baby diagnosis. This structure shows the causality relationships between the
direction of duct flow, the degree of cardiac mixing, hypoxia distribution, hypoxia
in O2 and the degree of lower body O2. More details of Bayesian networks can be
found in [4,15,17].

The main task of learning Bayesian network from data is to automatically find
directed edges between the nodes, such that the network can best describe the
causalities. Once the network structure is constructed, the conditional probabilities
are calculated based on the data. The problem of Bayesian network learning is
computationally intractable [7]. However, Bayesian network learning can be imple-
mented by imposing limitations and assumptions. For instance, the algorithms of
Chow and Liu [5] and Rebane and Pearl [33] can learn networks with tree
structures, while the algorithms of Herskovits and Cooper [18,8] and Bouckaert [3]
require the variables to have a total ordering. More general algorithms include
Heckerman et. al. [16], Spirtes et. al. [39] and Singh and Valtorta [36]. More
recently, Larranaga et. al. [30,29] has proposed algorithms for learning Bayesian
networks using GA’s.

2.3. Rule learning

A rule is a sentence of the form ‘if antecedents, then consequent ’. Rules are
commonly used in expressing knowledge and are easily understood by human. Rule
learning is the process of inducing rules from a set of training examples. Classical
algorithms in this field include AQ15 [32] and CN2 [6]. Previous works in rule
learning using evolutionary computation mainly use GA [19,13]. There are two
different approaches. In the Michigan approach [20,2], each individual in the GA
corresponds to a rule, while in the Pittsburgh approach [37,38] it corresponds to a
set of rules. The system REGAL [12] uses the Michigan approach and a distributed
genetic algorithm to learn first-order logic concept descriptions. It uses a selection
operator, called Universal Suffrage operator, to achieve the learning of multi-modal
concepts. Another system GABIL [23] uses the Pittsburgh approach. It can
adaptively allow or prohibit certain genetic operations for certain individuals. GIL
[22] also uses the Pittsburgh’s approach and utilizes 14 genetic operators. These
operators perform generalization, specialization or other modifications to the
individuals at the rule set level, the rule level and the condition level.
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3. Causality and structure analysis

In the proposed knowledge discovery process (Fig. 1), the causality and structure
analysis process induces a Bayesian Network from the data. The learning approach
is based on Lam and Bacchus’s work [27,26] on employing the minimum descrip-
tion length (MDL) principle to evaluate a Bayesian Network. EP is employed to
optimize this metric in order to search for the best network structure.

3.1. The MDL metric

The MDL metric measures the total description length Dt(B) of a network
structure B. A better network has a smaller value on this metric. Let N=
{N1, … Nn} denote the set of nodes in the network (and thus the set of variables,
since each node represents a variable), and PNi

denote the set of parents of node Ni.
The total description length of a network is the sum of description lengths of each
node:

Dt(B)= %
Ni�N

Dt
�

Ni, 5Ni

�
(1)

This length is based on two components, the network description length Dn and the
data description length Dd:

Dt
�

Ni, 5Ni

�
=Dn

�
Ni, 5Ni

�
+Dd

�
Ni, 5Ni

�
(2)

The formula for the network description length is:

Dn
�

Ni, 5Ni

�
=ki log2(n)+d(si−1) 5

j�5Ni

sj (3)

where ki is the number of parents of variable Ni, si is the number of values Ni can
take on, sj is the number of values a particular variable in PNi

can take on, and d
is the number of bits required to store a numerical value. This is the description
length for encoding the network structure. The first part in the addition is the
length for encoding the parents, while the second part is the length for encoding the
probability parameters. This length can measure the simplicity of the network.

The formula for the data description length is:

Dd
�

Ni, 5Ni

�
= %

Ni5Ni

M
�

Ni, 5Ni

�
log2

M
�5Ni

�
M
�

Ni, 5Ni

� (4)

where M(·) is the number of cases that match a particular instantiation in the
database.

This is the description length for encoding the data. A Huffman code is used to
encode the data using the probability measure defined by the network. This length
can measure the accuracy of the network.
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3.2. Combining MDL and EP

We combined the MDL metric and EP for Bayesian network learning [28,41].
The flowchart in Fig. 3 shows the process. Each individual represents a network
structure, which is a directed acyclic graph (DAG). A set of individuals is randomly
created to make up the initial population. Each graph is evaluated by the MDL
metric described above. Then, each individual produces a child by performing a
number of mutations. The child is also evaluated by the MDL metric. The next
generation of population is selected among the parents and children by tourna-
ments. Each DAG B is compared with q other randomly selected DAGs. The
tournament score of B equals to the number of rivals that B can win, that is, the
number of DAGs among those selected that have higher MDL scores than B. In
our setting, q=5. One half of DAGs with the highest tournament scores are
retained for the next generation. The process is repeated until the maximum
number of generations is reached. The number of the maximum number of
generations depends on the complexity of the network structure. If we expect a
simple network, the maximum number of generations can be set to a lower value.
The network with the lowest MDL score is output as the result.

Fig. 3. The flowchart of the Bayesian network learning process.
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3.3. The mutation operators

Offspring in EP is produced by using a specific number of mutations. The
probabilities of using 1, 2, 3, 4, 5 or 6 mutations are set to 0.2, 0.2, 0.2, 0.2, 0.1 and
0.1 respectively. The mutation operators modify the edges of the DAG. If a cyclic
graph is formed after the mutation, edges in the cycles are removed to keep it
acyclic. Our approach uses four mutation operators, with the same probabilities of
being used:
1. Simple mutation randomly adds an edge between two nodes or randomly deletes

an existing edge from the parent.
2. Reversion mutation randomly selects an existing edge and reverses its direction.
3. Move mutation randomly selects an existing edge. It moves the parent of the

edge to another node, or moves the child of the edge to another node.
4. Knowledge-guided mutation is similar to simple mutation, however, the MDL

scores of the edges guide the selection of the edge to be added or removed. The
MDL metric of all possible edges in the network is computed before the learning
algorithm starts. This mutation operator stochastically adds an edge with a
small MDL metric to the parental network or deletes an existing edge with a
large MDL metric.

4. Rule learning

The second step in our data mining process is to learn rules from the data. Our
learning approach is based on generic genetic programming (GGP) [43,42,40],
which is an extension of GP. It uses a grammar [21] to control the structures
evolved in GP.

4.1. The GGP process

The flowchart in Fig. 4 shows the process of using GGP for rule learning. A
grammar is provided as a template for rules. The algorithm starts with an initial
population of randomly created rules using the user-defined grammar. One individ-
ual corresponds to one rule. Each rule is evaluated by a fitness function described
in Section 5.1. Then, individuals are selected stochastically to evolve offspring by
the genetic operators. Rules with higher fitness scores have higher chances of being
selected. The three genetic operators, crossover, mutation and dropping condition
are detailed in Section 4.4. In each generation, the number of new individuals
evolved equals to the population size. Thus at this stage, the number of individuals
is doubled. All individuals participate in a token competition and a replacement
step, so as to eliminate similar rules and increase the diversity. These two steps are
presented in Section 5.2. One half of the individuals with the higher fitness scores
after token competition are passed to the next generation.

To estimate the fitness scores of individuals a data set is used in GGP. The data
set should be partitioned into a training set and a testing set. Only the training set



P. Shun Ngan et al. / Artificial Intelligence in Medicine 16 (1999) 73–9680

Fig. 4. The flowchart of the rule learning process.

is available for the learning process. After the maximum number of generations is
reached, the discovered rules are further evaluated with the unseen testing set, so as
to verify their accuracy and reject the rules that over-fit the training set. Our system
uses 60% of the data for the training set and 40% for the testing set.

4.2. Grammar

The grammar specifies the rule structures to be evolved from GGP. The format
of rules in each problem can be different. Thus, for each problem a specific
grammar is written so that the format of the rules can best fit the domain. In
general, the grammar specifies a rule is of the form ‘if antecedents then consequent ’.
The antecedent part is a conjunction of attribute descriptors. The consequent part
is an attribute descriptor as well. An attribute descriptor assigns a value to a
nominal attribute, a range of values to a continuous attribute, or can be used to
compare attribute values.
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Table 1
An example grammar for rule learning

Rule � if Antes, then Consq.
Antes �Attr1 and Attr2 and Attr3
Attr1 �any �Attr1 – descriptor
Attr2 �any �Attr2 – descriptor
Attr3 �any �Attr3 – descriptor
Attr1 – descriptor �attr1=erc1
Attr2 – descriptor �attr2 between erc2 erc2
Attr3 – descriptor �attr3 Comparator Attr3 – term
Comparator � �" �B= �\=B�\
Consq�Attr4 – descriptor
Attr4 – descriptor �attr4=boolean – erc

For example, consider a database with four attributes. We want to learn rules
about attr4 , which is Boolean. The attribute attrl is nominal and coded with 0,
1 or 2. The attribute attr2 is continuous between 0 and 200. The domain of
attr3 is similar to attr2 and we want the rule to compare them. An example of
the context free grammar for rule learning in given in Table 1. The symbols in
cursive are the non-terminals and the other symbols are the terminals. A production
rule of the form a�b specifies that the non-terminals a can be expanded to b.
a�b �g denotes{a�b, a�g}. The symbols ercl , erc2 , erc3 and boolean –
erc in this grammar are ephemeral random constants (ERCs). Each ERC has it
own range for instantiation: erc1 is within {0, 1, 2}, erc2 and erc3 are between
0 and 200, boolean – erc can only be T or F. In this grammar, the antecedent
part consists of descriptors of all attributes. However, a rule does not need
specifications for all attributes. The symbol ‘any’ is a generic descriptor that allows
an attribute to be ignored in the rule. An attribute can be described either by its
descriptor, or by ‘any’ such that it can be disregarded in the antecedent.

Table 2
An example derivation of rules

Rule
[ if Antes, then Consq.

if Attr1 and Attr2 and Attr3, then Consq.[

if Attr1 – descriptor and Attr2 – descriptor and Attr3 – descriptor, then[
Attr4 – descriptor.

[ if attr1=erc1 and attr2 between erc2 erc2 and attr3 Comparator Attr3 –
term, then attr4=boolean – erc.
if attr1=erc1 and attr2 between erc2 erc2 and attr3 "erc3, then attr4=[
boolean – erc.
if attr1=0 and attr2 between 100 150 and attr3 "50, then attr4=T.[
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The grammar is used to derive rules to make up the initial population. The start
symbolic the first symbol of the first line of the grammar. From the start symbol, a
complete derivation is performed. Table 2 is an example of how a rule is derived
from the grammar. This grammar allows the following rules:
� if attr1=0 and attr2 between 100 and 150 and attr3 "50, then

attr4=T.
� if attr1=1 and any attr3 ]attr2, then attr4=F.
GGP provides a powerful knowledge representation and allows a great fiexibility on
the rule format. The representation of rules is not fixed but depends on the
grammar. The descriptor is not restricted to compare attributes with values. Rather,
the descriptors can be comparisons between attributes. Rules with other formats
can be learned, provided that the suitable grammar is supplied. Moreover, rules
with the user-desired structure can be learned because the user can specify the
required rule format in the grammar.

4.3. Use of causality model and temporal order

The use of grammar can ensure syntactical correctness in the rule, but not
semantic correctness. It is desirable to eliminate meaningless rules in the search
process. This requires a certain degree of knowledge on the causality between the
attributes. The causality and structure analysis steps in our data mining module can
provide this knowledge. The Bayesian network may provide an overview of the
relationships among the attributes. For example, if we know that attribute A is not
related to any other attributes, then we do not need to learn rules about A. If we
know attribute B should depend on attributes C and D, then we can specify a rule
format like ‘if Battribute C descriptor\ and Battribute D descriptor\ , then
Battribute B descriptor\ ’.

The temporal order among attributes can also provide knowledge to increase the
learning efficiency. For example, in a medical domain, the rule ‘if treatment is
plaster, then diagnosis is radius fracture’ is inappropriate. This rule does not make
sense, because an operation is taken based on the treatment, not the other way
round. In general, an event that occurs later will not be a cause of an event that
occurred earlier! Thus, we can order the attributes according the temporal relation-
ship. The grammar should be designed such that an attribute is not placed in the ‘if’
part if it occurs later then the attribute in the ‘then’ part. This temporal order can
be represented easily using grammar. Both causality model and temporal order may
significantly reduce search space and prune meaningless rules.

4.4. Genetic operators

The search space is explored by generating new rules using three genetic
operators: crossover, mutation and a newly defined operator called dropping
condition. A rule is composed of attribute descriptors. The genetic operators try to
change the descriptors in order to search for better rules. Rank selection [13]
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method is being used to select the parents. The probabilities of using crossover,
mutation and dropping condition in our system are 0.5, 0.4 and 0.1, respectively.

Crossover is a sexual operation that produces one child from two parents. One
parent is designated as the primary parent and the other one as the secondary
parent. A part of the primary parent is selected and replaced by another part from
the secondary parent. Suppose that the following primary and secondary parents
are selected:

if attr1=0 and attr2 between 100 and 150 and attr3 "50, then
attr4=T.
if attr1=1 and any attr3 ]attr2, then attr4=F.

The underlined parts are selected for crossover. The offspring will be
if attr1=0 and attr2 between 100 and 150 and attr3 ]attr2, then
attr4=T.

The replaced part is selected randomly from the primary parent, hence genetic
changes may occur either on the whole rule, on several descriptors, or on just one
descriptor. The replacing part is also selected randomly, but under the constraint
that the offspring produced must be valid according to the grammar. If a conjunc-
tion of descriptors is selected, it will be replaced by another conjunction of
descriptors, but never by a single descriptor. If a descriptor is selected, then it can
only be replaced by another descriptor of the same attribute. This can maintain the
validity of the rule.

Mutation is an asexual operation. The genetic changes may occur on the whole
rule, several descriptors, one descriptor, or the constants in the rule. A part in the
parental rule is selected and replaced by a randomly generated part. The new part
is generated by the same derivation mechanism using the same grammar. Similar to
crossover, because the offspring have to be valid according to the grammar, a
selected part can only mutate to another part with a compatible structure. For
example, the parent

if attrl=0 and attr2 between 100 and 150 and attr3 "50, then
attr4=T.

may mutate to
if attrl=0 and attr2 between 100 and 150 and attr3=40, then
attr4=T.

Due to the probabilistic nature of GP, redundant constraints may be generated in
the rule. For example, suppose that the actual knowledge is ‘if AB20 then X=T’.
We may learn rules like ‘if AB20 and BB20, then X=T’. Of course, this rule is
correct, however, it does not completely represent the actual knowledge. Dropping
condition is an operator designed to generalize the rules. The rule can be general-
ized if one descriptor in the antecedent part is dropped. Dropping condition selects
randomly one attribute descriptor, and then turns it into ‘any’. That particular
attribute is no longer considered in the rule, hence the rule can be generalized.

The reproduction operator is not used in our approach. In conventional GP, an
individual can exploit its genetic material through the use of the reproduction
operator. Good individuals can reproduce themselves in the population and gradu-
ally dominate the population. However, in our system, we do not want a good rule
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to replicate itself. Rather, we need to diversify the population in order to find
several good rules. Hence reproduction is not used. Our system will only keep
one copy for each good individual through token competition.

5. Novel techniques for rule learning

Other than using GGP as the search algorithm, other techniques are needed so
as to efficiently learn multiple interesting rules from the database. These tech-
niques are described in the following section.

5.1. E6aluation of rules

Completeness and consistency are conventionally used as the evaluation met-
ric. However, a complete rule covering all the database records is unrealistic in a
real-life situation. The support-confidence framework [1] is employed instead.
Support measures the coverage of a rule. It is a ratio of the number of records
covered by the rule to the total number of records. Confidence factor (cf ) mea-
sures the consistency of a rule. It is the ratio of the number of records matching
both the consequence and the antecedents to the number of records matching
only the antecedents.

In the evaluation process, each rule is checked with every record in the train-
ing set. Three statistics are counted. The number antes–hit is the number of
records matching the antecedents (the ‘if’ part), consq–hit is the number of
records that match the consequent (the ‘then’ part), and both–hit is the number
of records that obey the whole rule (both the ‘if’ and the ‘then’ parts).

The confidence factor cf is the fraction both–hit/antes–hit. However, a high
confidence factor of a rule does not mean that the rule behaves significantly
different from the average. Therefore, we need to consider the average probabil-
ity of consequent (prob). The value prob is equal to consq–hit/total, where total
is the total number of records in the training set. This value measures the
confidence for the consequence under no particular antecedent.

We defined cf–part as:

cf–part=cf× log
� cf

prob
�

(5)

This value is based on two factors: cf and cf/prob. The log function measures
the order of magnitude of the ratio cf/prob. A high value of cf–part requires the
rule to have a high confidence (cf ) and cf is higher than the average probability
(prob).

Support is another measure that we need to consider. A rule can have a high
accuracy but may be found by chance and cover only a few training examples.
These kind of rules do not have enough support. The value of support is defined
as both–hit/total. If support is below a user-defined minimum, min–support, the
confidence factor of the rule should not be considered.
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We define our fitness function to be:

raw–fitness=support, if supportBmin–support (6)

raw–fitness=w1×support+w2×cf–part, otherwise

where the weights w1 and w2 are user-defined to control the balance between the
confidence and the support. The values are set to 1 and 8, respectively so that
the system prefers a rule with good confidence to a rule with good support.

5.2. Token competition

One important requirement of a rule learning system is to learn as many
interesting rules as possible. This can be modeled as the search for multiple
solutions. We follow the Michigan approach [20,2] where each individual repre-
sents one rule. The individuals in the population combined together represent a
rule set. The token competition [31] technique is employed to achieve the niching
[14] effect, so that good individuals in different niches are maintained in the
population. Token competition has an advantage that it does not need to define
and compare the similarity between individuals. It simply regards two individuals
to be similar if they cover the same records.

In the natural environment, once an individual has found a good place for
living, it will try to exploit this niche and prevent other newcomers to share the
resources, unless the newcomer is stronger than it is. Hence, the other individu-
als are forced to explore and find their own niches. In this way, the diversity of
the population is increased.

Based on this mechanism, we assume that each record in the training set can
provide a resource called token. If a rule can match a record, it will set a flag to
indicate that the token is seized. As a result, other weaker rules cannot get the
token. The priority of receiving tokens is determined by the strength of the rules.
A rule with a high score on raw–fitness can exploit the niche by seizing as many
tokens as it can. The other rules entering the same niche will have their strength
decreased because they cannot compete with the stronger rule. The fitness score
of each individual is modified based on the token it can seize. The modified
fitness is defined as:

modified–fitness=raw–fitness×count/ideal (7)

where count is the number of tokens that the rule actually seized, and ideal is
the maximum number of tokens that it can seize, which is equal to the number
of records that the rule matches.

As a result of token competition, there are rules that did not seize any token.
These rules are redundant as all of its records are already covered by the
stronger rules. They can be replaced by new individuals. Introducing these new
individuals can inject a larger degree of diversity into the population, and
provide extra chances for generating good rules.
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Fig. 5. The best network structure for the fracture database.

6. Results on the fracture database

The described data mining technology has been applied to a real-life medical
database consisting of children with limb fractures, admitted to the Prince of Wales
Hospital of Hong Kong during the period 1984–1996. This data can provide
information for the analysis of child fracture patterns. This database has 6500
records and eight attributes, which are listed in Table 3.

6.1. Results of causality and structure analysis

The relationships among the attributes are analyzed by learning a Bayesian
network. We have used a typical population size of 50 to run for 100 generations.
The execution time was 45 min on a Sun Ultra 1/140. The best network structure
is drawn in Fig. 5. Day, month, weekday and year refer to different parts of the
admission date.

Table 3
Attributes in the fracture database

DescriptionName Type Possible value

‘M’ or ‘F’SexNominalSex
AgeAge Numeric Between 0 and 16 years old

Between 1984 and 1996; Divided into four parts:Admday Date Admission date
day, month, year and weekday
Between 0 and 1000 days. Discretized intoNumericStay Length of stay-
18 non-uniform ranges.ing in hospital
10 different values, based on the location of fractureDiagnosis Nominal Diagnosis of

fracture
Nominal OperationOperation ‘CR’ (Simple closed reduction), ‘CR+K-wire’ (closed re-

duction with K-wire), ‘CR+POP’ (closed reduction with
POP), ‘OR’ (open reduction) or Null (no operation)

Nominal Surgeon One of 61 surgeons or Null if no operationSurgeon
Side of fractureSide ‘Left’, ‘Right’, ‘Both’ or ‘Missing’Nominal
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Table 4
Summary of the rules for the fracture database

cf/probAbout No. rules cf (%) support (%)

mean max minmean max min mean max min

8.4Diagnosis 2 10.045.6 9.251.4 39.8 1.6 1.7 1.4
5.4 16.2Operation 8 42.6 74.0 28.0 2.0 3.22.9 1.1

8.7Stay 7 71.1 81.1 47.0 2.5 7.0 1.4 3.14.5

This network shows three chains of causalities. The first chain shows that the
length of staying in hospital depends on the operation, the operation in turn
depends on the diagnosis. Another edge in the network is between sex and age.
Although by common sense, sex should not be the cause of age, further analysis
showed that in the database, the age is correlated with sex. Female patients are
more likely to be in the younger age group (age 0–7), and male patients are more
likely to be in the elder age group (11–15). There is another edge between year and
side and this result is quite surprising. The conditional probabilities are investigated
and two interesting points are revealed.
� The probabilities for the side equal to ‘both’ are exceptionally low for the years

1984, 1988 and 1992.
� The probabilities for the side equal to ‘missing’ are high for year 1995 and 1996,

while for other years, these probabilities are low.
This phenomenon cannot be explained reasonably. We suspected that different
notations are used in recording the side for different years.

6.2. Results of rule learning

Based on the learned Bayesian network, we observed a causality model between
diagnosis, operation and stay and we wished to learn about these attributes. In
addition, the temporal order gives extra knowledge on how the rules should be
formulated. The attributes can be divided into three time stages: a diagnosis is first
given to the patient, then an operation is performed, and after that the patient stays
in the hospital. This knowledge leads to three causality models. Firstly, sex, age and
admission date are the possible causes of diagnosis. Secondly, these three attributes
and diagnosis are the possible causes of operation and surgeon. Thirdly, length of
stay has all other attributes as the possible causes. A grammar (Appendix A) is written
as a template for these three kind of rules. We have used a population size of 300
to run for 50 generations in the rule learning step. The execution time was �3 h
on a Sun Ultra 1/140 for the 6500 records. The results are listed in Table 4.

Two interesting rules regarding the diagnosis are found. The one with the highest
confidence is:

If age is between 2 and 5, then diagnosis is Humerus. (cf=
51.436%)
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The confidences of the rules about diagnosis are �40–50%. This is partly because
there are no actual strong rules affecting the value of diagnosis. However the ratio
cf/prob shows that the patterns discovered deviated significantly from the average.
We found that humerus fractures are the most common fracture for children
between 2 and 5 years old and radius fractures are the most common fractures for
boys between 11 and 13.

Eight interesting rules about operation are found. The one with the highest
confidence is:

If age is between O and 7, and admission year is between 1988 and
1993, and diagnosis is Radius, then operation is CR+POP. (cf=
74.05%)

These rules suggest that radius and ulna fractures are usually treated with CR+
POP (i.e. plaster). An operation is usually not necessary for a tibia fracture. Open
reductions are more common for children \11 years of age, while younger
children (B7 years of age) have a higher chance of not needing operations. We did
not find any interesting rules about surgeons, as the surgeons for operation are
more or less randomly distributed in the database.

Seven interesting rules about length of stay are found. The one with the highest
confidence is:

If admission year is between 1985 and 1996, and diagnosis is
Femur, then stay is more than 8 days. (cf=81.11%)

The rules about the length of stay suggest that femur and tibia fractures are serious
injuries with patients having to stay longer in hospital. If open reduction is used,
the patient requires more time to recover because the wound has been cut open for
operation. If no operation is needed, it is likely that the patient can return home
within 1 day. Normally, radius fractures require a shorter recovery time.

The results have been evaluated by the medical experts. The causality model
matches with general knowledge. The doctor decides a treatment based on the type
of fracture, and the treatment affects the recovery. Previous analyses on fracture
patterns only gave an overall injury pattern. Our system automatically uncovered
relationships between different attribute values. The rules provide interesting pat-
terns that were not recognized before now. The analysis gives an overview of the
important epidemiological and demographic data of the fractures in children. It
clearly demonstrated the treatment pattern and rules of decision making. It can
provide a good monitor of the change of pattern of management and the epidemi-
ology if the data mining process is continued longitudinally over the years. It also
helps to provide the information for setting up a knowledge-based instruction
system to help young doctors in training to learn the rules in diagnosis and
treatment.

7. Results on the scoliosis database

The data mining process has been applied to the database of scoliosis patients.
Scoliosis refers to the spinal deformation, where a patient suffering from this has
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Table 5
Attributes in the scoliosis databasea,b,c

Explanation Possible valueName

Sex ‘M’ or ‘F’Sex
positive integerAgeAge
integer between 0Lax Joint Laxity
and 3

Whether 1st curve started at vertebra T1lstCurveT1 Y or N
lstMCGreater Y or NWhether the degree of 1st Major Curve is greater the the

2nd Major Curve
Y or NL4Tilt Whether vertebra L4 is tilted
positive integerDegree of 1st Major CurvelstMCDeg

Degree of 2nd Major Curve2ndtMCDeg positive integer
Apex of 1st Major CurvelstMCApex any vertebra

any vertebraApex of 2nd Major Curve2ndMCApex
positive integerDegl Degree of 1st Curve

Degree of 2nd CurveDeg2 positive integer
Degree of 3rd Curve positive integerDeg3
Degree of 4th CurveDeg4 positive integer

K-I, K-II, K-III, K-Scoliosis ClassificationClass
V, TL, L

Period of MenstruationMens positive integer
Trunk Shift (in cm) positive integerTSI

null, left or rightTSIDir Trunk Shift Direction
integer between 0Risser SignRI
and 5
Observation,TreatmentTreatment
surgery or bracing

a Vertebras are coded with Tl-T12 or L1-L5.
b Trunk shift measures the displacement of the curve.
c Risser sign measures the maturity of the patient.

one or several curves in his spine. Among them, the curves with severe deforma-
tions are identified as major curves. The database stores measurements on the
patients, such as the number of curves, curve location, degrees and directions. It
also records the maturity of the patient, the class of scoliosis and the treatment. The
database has 500 records. According to the domain expert, 19 attributes are useful
and extracted from the database in the preprocessing step (Table 5).

7.1. Results of causality and structure analysis

We have used a population size of 50 and a maximum number of generations of
1000 to run in the causality and structure analysis. The execution time was 3 min
on a Sun Ultra 1/140. The best Bayesian network structure is shown in Fig. 6. The
right part of the network shows that sex implies menstruation, and menstruation
implies age, and age in turn implies RI . The network also shows that TSIDir can
imply TSI because if TSI direction is null, TSI should be zero.
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The main part of the network shows that 2ndMCDegcan imply 2ndMCApex and
lstMCGreater . This is because if 2ndMCDeg=0, the patient does not have the
second major curve, and thus 2ndMCApex must be zero and the first major curve
must be the greater curve. The value of 2ndMCDegalso implies the degree of the
second curve (Deg2), because if the patient has two major curves, most of the time
the second major curve is the second curve. The value of lstMCDeg is affected by
lstMCGreater and Deg2. When the degree of first major curve is greater than
the second curve, lstMCDeg is most likely large. When Deg2 is large, the first
major curve is most likely going to be the second curve. The value of lstMCDeg
can imply Deg1 because when the value of lstMCDeg is small, the degree first
curve is not large. Deg2 can imply the value of L4Tilt and Deg3, while Deg3 can
imply lstCurveT1 . If the degree of the second curve is large, then usually L4 is
tilt. If the patient does not have the second curve, then he will not have the third
curve. Moreover, if he has at least three curves, then most of the time, the
deformation will start at the first vertebra T1. The network also shows that the
value of treatment mainly depends on lstMCDeg . On the other hand, Class
depends on Deg2.

7.2. Results of rule learning

The medical experts are interested to discover more about the classification and
treatment of scoliosis. Scoliosis can be classified as Kings, Thoracolumbar (TL) and
Lumbar (L), while Kings can be further subdivided into K-I, II, III, IV and V.
Treatment can be observation, surgery and bracing. The determinations of these
two attributes are complicated. Although the induced Bayesian network provides
valid and useful relationships, the domain expert is more interested in finding
relationships between classification and the attributes lstCurveTl, lstMC-
Greater,L4Tilt,lstMCDeg,2ndMCDeg,lstMCApex and 2ndMCApex , and
relationships between treatment and age, laxity, degrees of the curves, maturity of

Fig. 6. The best network structure for the scoliosis database.
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Table 6
Results of the rules for scoliosis classification

support (%)Class No. Rules cf (%) prob (%)

mean max min mean max min

0.86 28.33King-I 5 10.7394.84 100 90.48 5.67
14.38 1.07King-II 35.415 80.93 100 52.17 6.61

7.940.86King-III 4 23.58 2.5825.87 16.90 1.56
1.29 1.07King-IV 2 24.38 29.41 19.35 2.791.18

6.440.86King-V 5 54.13 1.0762.50 45.45 0.97
1.50 1.50TL 1 2.1541.18 41.18 41.18 1.50

4.51L 3 1.0754.04 2.7962.50 45.45 2.00

the patient, displacement of the vertebra and the class of scoliosis. This domain
knowledge can easily be incorporated in the design of the rule grammar. There are
two types of rules, one for the classification of scoliosis and the other for suggesting
treatment. The grammar is outlined in Appendix B.

The population size used in the rule learning step is 100 and the maximum number
of generations is 50. The execution time was �1 h on a Sun Ultra 1/140. The results
of rule learning from this database are listed below.

1. Rules for scoliosis classification.
An example of this kind of rules is:
if lstMCGreater=N and lstMCApex=T1-T8 and 2ndMCApex=L3-L4,
then King-I. (cf=l00%)

For each class of scoliosis, a number of rules are mined. The results are summarized
in Table 6. For King-I and II, the rules have high confidence and generally match
with the knowledge of medical experts. However, there is one unexpected rule for
the classification of King-II. Under the conditions specified in the antecedents, our
system found a rule with a confidence factor of 52% that was classified under King-II.
However, the domain expert suggests that the class should be King-V! After analysing
the database, we revealed that serious data errors existed in the current database and
that some records contained an incorrect scoliosis classification.

For King-III and IV, the confidence of the rules discovered is �20%. According
to the domain expert, one common characteristic for these two classes is that there
is only one major curve or that the second major curve is insignificant. However, there
is no rigid definition for a ‘major curve’ and the concept of ‘insignificant’ is fuzzy.
These all depend on a doctor’s interpretation. Due to the lack of this important
information, the system is unable to find accurate rules for these two classes. Another
problem is that only a small number of patients in the database where classified
according to King-III or IV (see prob in Table 6). The database cannot provide a
large number of cases for training. Similar problems also existed for King-V, TL and
L.

For the class King-V, TL and L, the system found rules with confidence around
40% to 60%. Nevertheless, the rules for TL and L show something different in
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comparison with the rules suggested by the clinicians. According to our rules, the
classification always depends on the first major cur6e, while according to the domain
expert, the classification depends on the larger major cur6e. After discussion with the
domain expert, it is agreed that the existing rules are not defined clearly enough, and
our rules are more accurate than them. Our rules provide hints to the clinicians to
re-formulate their concepts.

2. Rules about treatment.
A typical rule of this kind is:
If age=2-12 and Deg1=20-26 and Deg2=24-47 and Deg3=27-52 and
Deg4=0,then Bracing. (cf=100%)

The results are summarized in Table 7. The rules for observation and bracing have
very high confidence factors. However, the support is not high, showing that the rules
cover only fragments of the cases. Our system prefers accurate rules to general rules.
If the user prefers more general rules, the weights in the fitness function can be tuned.
For surgery, no interesting rule was found because only 3.65% of the patients were
treated with surgery.

The biggest impact on the clinicians from the data mining analysis of the scoliosis
database is the fact that many rules set out in the clinical practice are not clearly
defined. The usual clinical interpretation depends on the subjective experience. Data
mining revealed quite a number of mismatches in the classification on the types of
Kings curves. After a careful review by the senior surgeon, it appears that the database
entries by junior surgeons may be inaccurate and that the data mining rules discovered
are in fact more accurate! The classification rules must therefore be quantified. As
a result, the rules discovered can help in the training of younger doctors and act as
an intelligent means to validate and evaluate the accuracy of the clinical database.
An accurate and validated clinical database is very important for helping clinicians
to make decisions, to assess and evaluate treatment strategies, to conduct clinical and
related basic research, and to enhance teaching and professional training.

8. Conclusion

We have presented a data mining system that is composed of five steps. The third
and fourth steps are detailed. They both employ evolutionary computation as the
search algorithms. Causality and structure analysis focuses on the general causality

Table 7
Results of the rules about treatment

support (%)cf (%) prob (%)No. RulesType

mean max min mean max min

98.89Observation 1004 95.55 3.49 6.01 1.07 62.45
79.57 100 71.43Bracing 1.035 1.29 0.86 24.46

3.65––––0 –Surgery –
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model between the 6ariables while rule learning captures the specific behavior between
particular 6alues of the variables.

Our system is particularly suitable to the analysis of real-life databases that cannot
be described completely by just a few rules. Building a complete model for such a
database is difficult and usually results in a complicated model. We have used a
Bayesian network to give a causality model. The Bayesian network is easy to
understand while it has a well-developed mathematical model. Moreover, in many
real-life situations, the available rules are general guidelines with many exceptional
cases. The rule learning step aims to learn such kinds of knowledge. It compares the
confidence of the rule with the average probability and a search for patterns
significantly deviated from the normal. Token competition is used so as to learn as
many rules as possible. Furthermore, knowledge from domain experts can be very
useful to data mining. The use of grammar allows the domain knowledge to be easily
and effectively utilized. On one hand, grammar can prune the search space with
meaningless rules, while on the other hand, it can ensure that the output knowledge
is in the user desired format.

The system has been applied to two real-life medical databases. The results can
provide interesting knowledge as well as suggest refinements to the existing knowl-
edge. We also found unexpected results that led to the discovery of errors in the
database. In the fracture database, the system automatically uncovered knowledge
about the age effect on fracture, the relationship between diagnoses and operations,
and the effect of diagnoses and operations on the length of stay in the hospital. In
the scoliosis database, we have discovered new information regarding the classifica-
tion and treatment of scoliosis. This discovered knowledge will lead to a refinement
of existing knowledge.
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Appendix A. The grammar for the fracture database

This grammar is not completely listed. The grammar for the other attribute
descriptors is similar to the part of the grammar in lines 11–19.

1: Rule �Rule1 �Rule2 � Rule3
2: Rule1 � if Antesl, then Consq1.
3: Rule2 � if Antes1 and Antes2, then Consq2.
4: Rule3 � if Antes1 and Antes2 and Antes3, then Consq2.
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5: Antes1 �Sex1 and Age1 and Admday1
6: Antes2 �Diagnosis1
7: Antes3 �Operation1 and Surgeon1
8: Consq1 �Diagnosis – descriptor
9: Consq2 �Operation – descriptor � Surgeon – desriptor
10: Consq3 �Stay – descriptor
11: Sex1 �any � Sex – descriptor
12: Sex – descriptor �sex=sex – const
13: Admday1 �any � Admday– descriptor
14: Admday – descriptor �admday – day between day – const
day – const
15: Admday – descriptor �admday month between month – const
month – const
16: Admday – descriptor �admday – year between year – const
year – const
17: Admday – descriptor �admday weekday between weekday – const
weekday – const
18: Diagnosisl �any � Diagnosis – descriptor
19: Diagnosis – descriptor �diagnosis is diagnosis – const

Appendix B. The grammar for the scoliosis database

This grammar is not completely listed. The grammar for the other attribute
descriptors is similar to the part of the grammar in lines 7–12.

1: Rule �Rule1 � Rule2
2: Rule1 � if Antes1, then Consq1.
3: Rule2 � if Antes2, then Consq2.
4: Antes1 �1stCurveT1 lstMCGreater and L4Tilt and lstMCDeg

and 2ndMCDeg and lstMCApex and 2ndMCApex
5: Antes2 �Age and Lax and Deg1 and Deg2 and Deg3 and Deg4 and

Mens and RI and TSI and ScoliosisType
6: Consq1 �ScoliosisType – descriptor
7: 1stMCGreater �any � lstMCGreater – descriptor
8: 1stMCGreater – descriptor � lstMCGreater=boolean – const
9: 1stMCDeg �any � lstMCDeg – descriptor
10: 1stMCDeg – descriptor � lstMCDeg between deg – const

deg – const
11: 1stMCApex �any � lstMCApex – descriptor
12: 1stMCApex – descriptor �1stMCApex between Apex – const

Apex – const
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